Rous Sarcoma Virus RNA Stability Element Inhibits Deadenylation of mRNAs with Long 3′UTRs

نویسندگان

  • Vidya Balagopal
  • Karen L. Beemon
چکیده

All retroviruses use their full-length primary transcript as the major mRNA for Group-specific antigen (Gag) capsid proteins. This results in a long 3' untranslated region (UTR) downstream of the termination codon. In the case of Rous sarcoma virus (RSV), there is a 7 kb 3'UTR downstream of the gag terminator, containing the pol, env, and src genes. mRNAs containing long 3'UTRs, like those with premature termination codons, are frequently recognized by the cellular nonsense-mediated mRNA decay (NMD) machinery and targeted for degradation. To prevent this, RSV has evolved an RNA stability element (RSE) in the RNA immediately downstream of the gag termination codon. This 400-nt RNA sequence stabilizes premature termination codons (PTCs) in gag. It also stabilizes globin mRNAs with long 3'UTRs, when placed downstream of the termination codon. It is not clear how the RSE stabilizes the mRNA and prevents decay. We show here that the presence of RSE inhibits deadenylation severely. In addition, the RSE also impairs decapping (DCP2) and 5'-3' exonucleolytic (XRN1) function in knockdown experiments in human cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural characterization of the Rous sarcoma virus RNA stability element.

In eukaryotic cells, an mRNA bearing a premature termination codon (PTC) or an abnormally long 3' untranslated region (UTR) is often degraded by the nonsense-mediated mRNA decay (NMD) pathway. Despite the presence of a 5- to 7-kb 3' UTR, unspliced retroviral RNA escapes this degradation. We previously identified the Rous sarcoma virus (RSV) stability element (RSE), an RNA element downstream of ...

متن کامل

Serine/arginine-rich proteins contribute to negative regulator of splicing element-stimulated polyadenylation in rous sarcoma virus.

Rous sarcoma virus (RSV) requires large amounts of unspliced RNA for replication. Splicing and polyadenylation are coupled in the cells they infect, which raises the question of how viral RNA is efficiently polyadenylated in the absence of splicing. Optimal RSV polyadenylation requires a far-upstream splicing control element, the negative regulator of splicing (NRS), that binds SR proteins and ...

متن کامل

Regulated deadenylation in vitro.

The 3'-poly(A) tail, found on virtually all mRNAs, is enzymatically shortened by a process referred to as "deadenylation." Deadenylation is a widespread means of controlling mRNA stability and translation. The enzymes involved-so-called deadenylases-are surprisingly diverse. They are controlled by RNA sequences commonly found in 3'-untranslated regions (UTRs), which bind regulatory factors. Bot...

متن کامل

Efficient polyadenylation of Rous sarcoma virus RNA requires the negative regulator of splicing element.

Rous sarcoma virus pre-mRNA contains an element known as the negative regulator of splicing (NRS) that acts to inhibit viral RNA splicing. The NRS binds serine/arginine-rich (SR) proteins, hnRNP H and the U1/U11 snRNPs, and appears to inhibit splicing by acting as a decoy 5' splice site. Deletions within the gag gene that encompass the NRS also lead to increased read-through past the viral poly...

متن کامل

Identification of the 5' end of Rous sarcoma virus RNA.

The 5'-terminal triphosphate of the 35S RNA isolated from Rous sarcoma virus is blocked by 7-methylguanosine in 5' linkage with the penultimate nucleoside which is methylated in the 2'-O-ribose position, a type of endgroup found in all animal mRNAs investigated during the past year. The specific nuclease-resistant terminal fragment of RSV RNA has the structure 7mG5'ppp5'GmpCp-. This finding sup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017